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Valuations on Complemented Lattices
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It is proved that the space of all bounded real-valued valuations . with p.(0) = 0
on a complemented lattice is isomorphic to the space of all real-valued totally
additive measures on a suitable complete Boolean algebra.

0. INTRODUCTION

In this paper we establish a natural isomorphism between the space of
all bounded real-valued valuations w with w(0) = 0 on a complemented
lattice L and the space of all real-valued totally additive measures on C(L);
here L is a suitable completion of a quotient of L and C(L) the center of L;
see Theorem 4.3. In particular, this answers in the affirmative the question
of P. Ptdk of whether the space of all positive valuations p. with p(0) =
0 on an orthomodular lattice is isomorphic to a space of measures on a
Boolean algebra.

A result—similar to that of this paper for valuations—was obtained in
Weber (n.d.-a) for exhaustive lattice uniformities on orthomodular lattices:
The lattice of all exhaustive lattice uniformities on L is isomorphic to the
space of all order continuous FN-topologies on C(L). The analogous result
can be derived from Avallone and Weber (n.d.) for a complemented modular
lattice L. The proof of our main result (Theorem 4.3) is based on the idea
which underlies the mentioned theorem from Weber (n.d.-a) for lattice unifor-
mities, the Hahn-decomposition theorem (Section 2), and an extension theo-
rem (Section 3) for valuations.

1. PRELIMINARIES

Throughout let L be a lattice with smallest element 0 and greatest
element 1.
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We denote by A := {(x, x): x € L} the diagonal of L X L and by N
and R the sets of natural and real numbers, respectively.
A valuation on L is a function p: L — R satisfying

pEVY) + px Ay = wx) + ply) forall x,yelL

W is called order continuous (or o-order continuous) if (u.(x,)) converges to
i(x) whenever (x,) is, respectively, a monotone net (or a monotone sequence)
order-converging to an element x e L. It follows, e.g., from Fleischer and
Traynor (1982), Theorem 3, that

N(w) := {(x,y) € L* p is constant on [x A y, x Vv y]}
is a congruence relation for any valuation u: L — R.

1.1. Proposition. Let (pa)aeA be a family of valuations on L and N =
Naesa N(pe). Then the quotient L := L/N is a modular lattice. Moreover, L
is relatively complemented if L is complemented.

Proof. L is modular by Fleischer and Traynor (1982), Theorem 1, applied
to the function m: L — R# defined by m(x) := (o(x))qea. [Another proof
of the modularity of £, can be obtained by a modification of the second proof
of Birkhoff (1984), Theorem X.2, that is near at hand.] Obviously, Lis
complemented. But any complemented modular lattice is relatively comple-
mented by Birkhoff (1984), Theorem 1.14.

1.2. Proposition. Let L be complemented and p: L — R a valuation
with p(0) = 0.

(a) If w(x) = O for all x € L, then w is increasing, hence bounded.

(b) If p is bounded, then . is of bounded variation, hence the difference
of two increasing valuations.

Proof. For relative complemented lattices with 0 and 1, the assertion is
formulated in Exercise 5 on p. 241 of Birkhoff (1984). One can reduce the
assertion to the relative complemented case passing to the quotient L :=
L/N() defining on L a valuation fi by () = w(x) for x € £ € L. The
quotient L is relatively complemented, by Proposition 1.1.

The center C(L) of L is the set of elements of L which have one
component 1, and the other 0,, under some direct factorization L = L; X L,
(Birkhoff, 1984, p. 67; Maeda and Maeda, 1970, p. 18). C(L) is a Boolean
sublattice of L (Maeda and Maeda, 1970, (4.15)).

For p: L — R and a e L, we define p,: L — R by p{x) := pla A x).

1.3. Proposition. Let w: L — R be a valuation with w(0) = 0, a e C(L),
and a’ its unique complement (Maeda and Maeda, 1970, (4.14)). Then .,
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Mg are valuations and @ = p, + . ; moreover, w, and W, are, respectively,
bounded or g-order continuous or order continuous if w is.

Proof. We may assume that L = L, X L,, a = (1, 0), a’ = (0, 1). The
assertion follows from the fact that then w, = w © p; and puy = @ O py,
where p; and p, denote the projections from L; X L, onto L; X {0} and {0}
X L,, respectively.

A uniformity u on L which makes the lattice operations v and A uniformly
continuous is called a lattice uniformity. u is called exhaustive if every
monotone sequence is Cauchy in (L, u). We denote by N(u) the closure of
the diagonal A with respect to u; then N(u) is a congruence relation.

If w: L — R is an increasing (= isotone) valuation, then d,(x, y) :=
w(x v y) — ulx A y) defines a semimetric on L which induces an exhaustive
lattice uniformity (Birkhoff, 1984, Theorems X.1 and X.4). u is uniformly
continuous with respect to d,,. Moreover, N(u) = N(d,-uniformity).

2. THE HAHN DECOMPOSITION

The proof of the injectivity of the isomorphism established in Theorem
4.1 is based on the following theorem.

2.1. Theorem. Let L be a complemented lattice, u: L — R a valuation
with w(0) = 0, and L = L/IN().

(a) Then the following conditions are equivalent:

(1) There exists an element a € L with p{a) = sup pn(L).

(2) There exists an element » € L with w(b) = inf p(L).

(3) There exist elements a, b e L such that p, and p, are valuations,

Po(x) = 0 and pp(x) = Oforx e Lyand o = w, + .

(b) If the conditions of (a) are satisfied, the elements a, b are uniquely
determined except for equivalence with respect to N(j1). Moreover, the equxva—
lence classes d and b containing a and b, respectively, belong to C(L) and b
is the complement of 4.

(c) If L is o-complete and p. o-order continuous, then the conditions of
(a) are satisfied.

Proof. Part (c). By Weber (n.d.-b, 1.2.3), any o-order continuous valua-
tion on a o-complete lattice attains its supremum.

In the proof of (a), (b) we may assume—passing to the quotient [ —that
N(u) = A. Then L is relatively complemented, by Proposition 1.1.



1802 Weber

(i) p attains in at most one point its supremum: Let a,, a, € L with
wa) = way) =sup () =:sanda, A ay = x < a, v a,. If x' is a relative
complement of x in [a; A a5, a; V a;], then

R0 + pux’) = plx Ax’) + wlx v x') = wla A a) + pla v ay)
= wlay) + ay) = 2s

hence p(x) = s = w(ay). It follows that (a;, a;) € N(uw) = A, ie., a; = a,.

(ii) Applying (i) to —p, one obtains that  attains its infimum in at
most one point.

(iii) Let a, b be elements according to (3). Then for any x € L we get,
using Proposition 1.2(a), w(x) = (%) + mp(x) = mo(x) = po() = wia). It
follows that p(a) = sup u(L). Similarly, p(b) = inf w(L). By (i) and (ii), a
and b are uniquely determined.

(iv) Assume that (1) or (2) is satisfied. We may assume that p(a) =
sup u(L) for some a € L; otherwise replace p by — .. Let b be a complement
of a. Then p(b) = inf w(L): In fact, if x € L and x’ is a complement of x, then

) = (1) — ') = (1) — wa) = ub)

It follows from (ii) that @ has a unique complement. By Maeda and
Maeda (1970), (4.20), an element of a relatively complemented lattice having
a unique complement belongs to its center. Hence a € C(L) and therefore
also b e C(L) (Maeda and Maeda, 1970, (4.14)). By Proposition 1.3, w, and
M, are valuations and i = w, + .. Let x € L. If y is a relative complement
of a A x in [0, a], then p(x) = Wa) — p(y) = 0 and p(x) = pla@ v (b A
x) — ma) = 0.

3. EXTENSION OF VALUATIONS

The proof of the surjectivity of the isomorphism established in Theorem
4.1 is based on the following Radon—Nikodym-type theorem. It can be easily
deduced from the usual Radon-Nikodym theorem and the representation
theorem (Sikorski, 1969, 29.1) for Boolean o-algebras. But I prefer to give
a direct proof repeating the idea for the proof of the Radon—Nikodym theorem.

3.1. Proposition. Let . and v be positive o-additive measures on a o-
complete Boolean algebra A with N(v) C N(p). Denote by § the set of
measures of the type 2=, a;v,, where o; are positive real numbers and d;
€ A. Then there is a sequence (p,) in S such that w(x) = X7., m(x) for x
e A.

Proof. (1) Passing to the quotient A/N(v), we may assume that v is strictly
positive. Let € > 0. We show that there exists a g € § such that pg(x) <
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m(x) < po(x) + 2e for x € A. Let a > 0; the Hahn decomposition theorem

for the measure av — . yields an element x, € A such that w(x) = av(x)

for x e [0, x,] and p(x) = av(x) for x e [0, x;], where x, denotes the

complement of x,. Since v is strictly positive, a =< (3 implies x, = xp, and

x, T 1 (= unit of A). Choose m € N with w(x,) = € and v(1)/m =< e. Put
2

Xp i = O’ di = -xi/m\xi~l/m’ Mo - = E ((l o 1)/}?’1)1}(1‘.
i=1

For x € A we have
(i — Dimyv(x A d) = wx Ad) =< (iIlmv(x A d)
Summing up these inequalities for i = 1, ..., m?, one obtains

Wo(X) = Blx A X)) = po(x) + (UVmv(x A x,,)
It follows that
Mo(X) = p(x) = plx A x,) + plx\x,,)
= po(x) + (mv(1) + plx) = polx) + 2€

(ii) By (i), we can choose inductively p.,, € § with
on—l1

LX) = wix) — 2 i) = px) + (I/ny for ne Nandx € A
=1

Hence 27| p,(x) = w(x).

3.2. Corollary. Suppose that C is a o-complete Boolean subalgebra of
C(L) and a, | 0 in C implies a, { 0 in L. Let py: C — R be a positive o-
additive measure and v: L — R a (o-) order continuous increasing valuation
such that N(v 1 C) C N(). Then there exists an increasing (o-) order continu-
ous valuation p: L — R extending .

Proof. Replacing v by v — v(0), we may assume that v(0) = O; then
vIC is a g-additive measure. Let S be the set of functions of the type %,
a,v,, where o are positive real numbers and d; € C. All these functions are
by Proposition 1.3 increasing (o-) order continuous valuations on L. By
Proposition 3.1, there exists a sequence (jr,) in § such that 2 Malx) =
wo(x) for x € C. Denote by ||-||. the sup-norm. Since %7 [[wall = 25-,
(1) = po(l) < +oo, the series 25—, p, is uniformly convergent and its
value w := X, p, is an increasing (o-) order continuous valuation
extending pq.

3.3. Remark. Corollary 3.2 (as well Proposition 1.3 used in the proof
of Corollary 3.2) also holds true if one replaces valuations by states on
orthomodular lattices.
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4. THE ISOMORPHY BETWEEN by(L) AND ocv(C(L)) FOR L
COMPLEMENTED

We denote by bv(L) and ocv(L), respectively, the linear spaces of all
bounded and all order continuous valuations : L — R with u(0) = 0. The
space bv(L) is a Banach space with respect to the sup-norm ||-||.. If L is o-
complete, ocv(L) is a closed linear subspace of bv(L) (Weber, n.d.-b, 1.2.3).
The spaces bv(L) and ocv(L) are partially ordered linear spaces with respect
to the pointwise ordering.

4.1. Theorem. Let L be a complemented complete lattice such that
r-]},usocv(L) N(P«) = A,

(a) Then C(L) is a complete sublattice of L; and x, | x in C(L) implies
x, ¥ x in L (and dually).

(b) . = pIC(L) defines an order-preserving isometry from ocv(L)
onto ocv(C(L)).

Proof. By Proposition 1.1, L is modular and relatively complemented.
Therefore (a) follows from Gritzer (1978), Corollary I11.4.11.

By (a), H(p) := nIC(L) € ocv(C(L)) if p & ocv(L). Obviously, r is
linear. Since, by Theorem 2.1, any . € ocv(L) attains its supremum and its
infimum on C(L}), the map r preserves the sup-norm; in particular, r is injective.

Denote by V the set of all increasing valuations of ocv(L). We now
prove with the aid of Corollary 3.2 that any positive g € ocv(C(L)) can be
extended to a valuation p e V; this implies that r is surjective and order
preserving. By Corollary 3.2 it is enough to show that N(pe) D N(wIC(L))
for some v € V.

Let v € V. Then {x € L: v(x) = 0} = [0, a(v)] for some a(v) € L.
The congruence N(v) is standard by Gritzer (1978), Theorem II1.3.10, since
L is a relatively complemented lattice with O; hence a(v) is a standard element
by Griitzer (1978), Corollary 111.3.3. By Gritzer (1978), Exercise 18, p. 144,
and Maeda and Maeda (1970), (4.13), in a modular complemented lattice
the center consists precisely of all standard elements. Hence a(v) e C(L)
and a(v) has, by Maeda and Maeda (1970), Remark (4.14), a unique comple-
ment s(v) which also belongs to C(L).

We show that sup,., s(v) = 1: For s := sup,., s(u) and v € V we
have (s, 1) € N(v), since (s(v), 1) € N(v). It follows with the aid of the
Hahn decomposition Theorem 2.1 that (s, 1) € Nyc, N(V) = N, conzy MV)
= A, hence s = 1.

Let g € ocv(C(L)) be a positive measure, a € C(L) with {x € C(L):
po(x) = 0} = [0, a] N C(L) and s the complement of a in C(L). Since the
Boolean algebra [0, s] N C(L) satisfies the countable chain condition and
sup,., s(v) = 1, there is a sequence (v,) in V with s =< sup, .y s(v,) and



Valuations on Complemented Lattices 1805

therefore a sequence (a,) of pairwise disjoint elements of C(L) with s =
SUP,en @, and a, = s(v,) for n € N. Choose €, > 0 with €,v,(1) = 27", put
M) i=v(xAaa)forx e L. Thenv:= 37_ e\, € Vand s(v) = s, i.e.,
N@IC(L)) = N(p).

Our main theorem, Theorem 4.3, is a consequence of the algebraic result,
Theorem 4.1, and the following topological result.

4.2. Proposition. Let w be a Hausdorff lattice uniformity on L and
(L, W) its uniform completion.

(a) Then L becomes a lattice by continuously extending the lattice
operations from L to L.

(b) If w is exhaustive, then W is order continuous and (L, <) is a
complete lattice.

(¢) If w is exhaustive and L a complemented modular lattice, then also
L is complemented and modular.

For (a), (b) see Kiseleva (1967) or Weber (1991), 1.3.1 and 6.15. (c) is
proved in Weber (n.d.-c).

We use in the following result the fact that for any lattice uniformity w
on L the quotient uniformity w of w on L/N(w) is a Hausdorff lattice uniformity
(Weber, 1991, 1.2.4).

4.3. Theorem. Let L be a complemented lattice and w the (exhaustive)
lattice uniformity generated by the family of all semimetrics d,, defined by
increasing valuations p.: L — R. Let w be the quotient uniformity of w on
L := L/N(w) and (L, w) the completion of (L, w). Then the spaces bv(L),
bw(L), oc (L), ocv(C(L)) are isometric Banach spaces and isomorphic as Riesz
spaces. The natural order-preserving linear isometries are defined as follows:

bu(l) > w = f & bv(l), where i(%) = p(x) andx e £ e L
ocv(l) 3 i » QIL € bv(L)
oev(l) 5 L~ pICEL) € ocv(C(L))

Proof. Obviously, the first map (u — [i) is an order-preserving linear
isometry. From the facts that any fi € ocw(l) is bounded, by Weber
(n.d.-b), 1.2.3 [or by Theorem 2.1, Proposition 4.2(c)], and that the continuous
extension of any fi e bw(L) on (L, W) belongs to ocv(L), since W is order
continuous by Proposition 4.2(b), it easily follows that the second map (ji
— fi|L) is an order-preserving linear isometry. The third map (i ~ &1C(D))
is by Theorem 4.1 an order-preserving linear isometry, since L is complete
by Proposition 4.2(b) and complemented by Proposition 4.2(c) and Proposi-
tion 1.1.

The space ocv(C(L)) coincides with the space of all real-valued totally
additive measures on C(L).
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